Laboratoire: MPQ (Matériaux et Phénomènes Quantiques), Université Paris Cité & CNRS
Adress: Bâtiment Condorcet – 10 Rue A. Domon et L. Duquet – 75013 Paris
Internship/PhD supervisor: François Mallet
Tel: 0678692918
e-mail: francois.mallet@sorbonne-universite.fr
Scientific project:
In the TELEM team of the MPQ laboratory, a platform for injecting pure spin current i.e. magnons, into 2D materials by radiofrequency pumping of the resonance of an adjacent ferromagnetic metal has just been set up. In a recent work, we obtained a clear spin-pumping signature in graphene: the damping of the ferromagnetic resonance increases in its presence. The next stage of this project therefore aims to study not only the generation, but also the propagation of magnons in this material by inverse spin Hall effect in a material with strong spin-orbit coupling [2]. Conversely, we have also demonstrated that another 2D material such as WSe2 significantly enhances the coherence of Co’s thin-film FMR (on the order of a few nanometers). This opens up new prospects in the field of optomagnonics, with the possibility of making the coupling between magnons and photons tunable [3].
[1] J.F. Sierra, J. Fabian, R.K. Kawakami, et al., Nat. Nanotechnol. 16 (2021), 856–868
[2] D. Indolese, S. Zihlmann, P. Makk, et al., Phys. Rev. Applied 10 (2018), 044053.
[3] S. Yoshii, K. Kato, E. Shigematsu, et al. Phys. Rev. B 106, (2022) 174414.
Methods and techniques: micro and nanofabrication in clean-room environment (e-beam lithography, thin film deposition, …) structural characterizations by atomic force microscope, electrical transport and magnetotransport measurements from 1K to 350K, from DC to RF (10 GHz).
Possibility to go on with a PhD: YES
Envisaged fellowship: EDPIF
À lire aussi
Seminars
Prof. Sebastian Loth — University of Stuttgart, Institute for Functional Matter and Quantum TechnologiesTitle: Coming soon16 Janvier 2026 à 11h00 — Salle Luc Valentin (454A) Dr. Florian Dirnberger — Department of Physics, TUM School of Natural Sciences, Technical...
On-Chip Ferromagnetic Resonance for van der Waals Heterostructures: Anisotropy and Damping of Cobalt Interfaced with Exfoliated 2D Materials
A collaboration between the technical hub, the clean room platform and the TELEM group at MPQ laboratory has developped a new experiment demonstrating that standard broadband ferromagnetic resonance can still be effective to probe the magnetization dynamics of “thin...
Materials science – When the surface reaches deep inside…
Crystalline surfaces often exhibit reconstructions, usually assumed to affect only a few atomic layers below the surface. A collaborative study (conducted by the Matériaux et Phénomènes Quantiqueslaboratory in Paris, the Institut P’ in Poitiers, and the SixS beamline...
Exhibition – Matériaux et phénomènes illustrés
General public exhibition, free access. At the MPQ laboratory, electronic and photonic chips are designed and manufactured for use in both fundamental research and industrial applications, such as quantum telecommunications and high-precision mechanical sensors.The...