Nano-Optomécanique
Optomécanique des nano-disques semiconducteurs
L’optomécanique, qui étudie le couplage entre la lumière et le mouvement mécanique, est un domaine en plein essor à l’interface de l’optique, de la physique de la matière condensée et de la physique quantique [a,b]. Il est aujourd’hui possible d’utiliser de la lumière laser pour refroidir le mouvement d’un oscillateur mécanique placé en cavité optique, une technique qui est en partie analogue au refroidissement laser d’atomes ou d’ions [c,d,e]. Le refroidissement laser d’un oscillateur mécanique jusqu’à de très basses températures le plonge dans un régime quantique de vibration, une manifestation originale de la physique quantique à l’échelle macroscopique. Ce régime quantique requiert des températures hors d’atteinte par cryogénie conventionnelle (sous le milliKelvin), mais que l’on peut atteindre par refroidissement optique. L’obtention d’un tel régime ouvre un nouveau champ d’étude : comment un oscillateur mécanique macroscopique perd-t-il sa cohérence quantique et transite vers un comportement classique ? Peut-on générer des états non-classiques de mouvement pour un oscillateur mécanique ? Quelles seraient les limites de performance d’un capteur micromécanique quantique ?
Nos recherches en optomécanique se focalisent sur des résonateurs semiconducteurs en forme de disques miniatures, réalisés en arséniure de gallium GaAs (voir image, diamètre quelques microns, épaisseur typique 200 nanomètres). Ces disques sont à la fois des résonateurs mécaniques haute fréquence (GHz) et des cavités optiques de haute qualité. Au sein d’un disque, les photons sont piégés à la périphérie par réflexion totale interne et circulent dans un mode de galerie, tel le son parcourant une galerie acoustique circulaire. Dans cette cavité confinant la lumière sur un volume sub-micronique, l’interaction lumière-matière est intensifiée et donne naissance à un couplage extrême entre optique et mécanique : la lumière circulant dans la galerie agit mécaniquement sur les vibrations de respiration du disque (via une force de radiation), et inversement les vibrations du disque affectent l’état des photons dans la cavité. Le couplage optomécanique géant dans un disque GaAs et en fait un excellent système pour étudier les phénomènes optomécaniques : refroidissement optique vers le régime quantique, régimes optomécaniques non-linéaires, applications de capteurs mécaniques à lecture optique …
À lire aussi
TUPHO, pour la production à grande échelle de circuits photoniques intégrés
Le projet TUPHO est une initiative qui veut combler le fossé entre innovation en amont et production à grande échelle dans l’industrie des circuits photoniques intégrés (PICs). Il est porté par Hamidreza Neshasteh et Ivan Favero, membres de l’équipe Light and...
Towards light control of van der Waals magnets
Laboratoire: MPQ (Matériaux et Phénomènes Quantiques), Université Paris Cité & CNRS Adress: Bâtiment Condorcet – 10 Rue A. Domon et L. Duquet – 75013 Paris Internship/PhD supervisor: Niloufar Nilforoushan and Yann Gallais Tel: 0157276223 e-mail:...
Résonance ferromagnétique sur puce pour les hétérostructures de van der Waals : anisotropie et amortissement du cobalt interfacé avec des matériaux 2D exfoliés
Une collaboration entre le pôle technique, la plateforme de la salle blanche et le groupe TELEM du laboratoire MPQ a permis de développer une nouvelle expérience démontrant que la résonance ferromagnétique large bande standard reste un outil efficace pour sonder la...
Science des matériaux – Quand la surface impacte en profondeur…
Les surfaces cristallines présentent souvent des reconstructions1, supposées n’affecter que quelques couches sous la surface. Une étude collaborative (laboratoire Matériaux et Phénomènes Quantiques à Paris, Institut P’ à Poitiers, et ligne de lumière SixS) a analysé...