Nano-Optomécanique
Optomécanique des nano-disques semiconducteurs
L’optomécanique, qui étudie le couplage entre la lumière et le mouvement mécanique, est un domaine en plein essor à l’interface de l’optique, de la physique de la matière condensée et de la physique quantique [a,b]. Il est aujourd’hui possible d’utiliser de la lumière laser pour refroidir le mouvement d’un oscillateur mécanique placé en cavité optique, une technique qui est en partie analogue au refroidissement laser d’atomes ou d’ions [c,d,e]. Le refroidissement laser d’un oscillateur mécanique jusqu’à de très basses températures le plonge dans un régime quantique de vibration, une manifestation originale de la physique quantique à l’échelle macroscopique. Ce régime quantique requiert des températures hors d’atteinte par cryogénie conventionnelle (sous le milliKelvin), mais que l’on peut atteindre par refroidissement optique. L’obtention d’un tel régime ouvre un nouveau champ d’étude : comment un oscillateur mécanique macroscopique perd-t-il sa cohérence quantique et transite vers un comportement classique ? Peut-on générer des états non-classiques de mouvement pour un oscillateur mécanique ? Quelles seraient les limites de performance d’un capteur micromécanique quantique ?
Nos recherches en optomécanique se focalisent sur des résonateurs semiconducteurs en forme de disques miniatures, réalisés en arséniure de gallium GaAs (voir image, diamètre quelques microns, épaisseur typique 200 nanomètres). Ces disques sont à la fois des résonateurs mécaniques haute fréquence (GHz) et des cavités optiques de haute qualité. Au sein d’un disque, les photons sont piégés à la périphérie par réflexion totale interne et circulent dans un mode de galerie, tel le son parcourant une galerie acoustique circulaire. Dans cette cavité confinant la lumière sur un volume sub-micronique, l’interaction lumière-matière est intensifiée et donne naissance à un couplage extrême entre optique et mécanique : la lumière circulant dans la galerie agit mécaniquement sur les vibrations de respiration du disque (via une force de radiation), et inversement les vibrations du disque affectent l’état des photons dans la cavité. Le couplage optomécanique géant dans un disque GaAs et en fait un excellent système pour étudier les phénomènes optomécaniques : refroidissement optique vers le régime quantique, régimes optomécaniques non-linéaires, applications de capteurs mécaniques à lecture optique …
À lire aussi

Parution du livre “Physique quantique des matériaux ” par Alain Sacuto
Alain Sacuto (équipe SQUAP) publie aux éditions Dunod son livre sur la Physique quantique des matériaux, fruit de nombreuses années d’enseignement à l’Université Paris Cité. La physique quantique des matériaux est au cœur des développements technologiques les plus...

Stabilité thermique des nanoalliages à haute entropie : réalité ou chimère ?
En étudiant à l’échelle atomique le comportement thermique de nanoparticules composées d’or, de cobalt, de cuivre, de nickel et de platine, des scientifiques ont révélé que la stabilité de ces nanoalliages dits à haute entropie est beaucoup plus faible qu’espérée, car...

Génération d’intrication spatiale sur puce
L'équipe QITE du laboratoire MPQ vient de publier dans Phys. Rev. Lett. ses travaux sur la génération d'intrication spatiale dans des réseaux de guides d'onde non-linéaires, en collaboration avec le C2N et l'INPHYNI. Combining the generation and manipulation of...

Une source hybride III-V / Silicium de photons intriqués
L'équipe QITE du laboratoire MPQ, en collaboration avec le C2N, l' INPHYNI et STMicroelectronics, vient de publier dans PRX Quantum ses travaux sur le développement de sources hybrides de photons intriqués. Combiner la génération et la manipulation d'états quantiques...