
A Metamaterial-based technology to create Electricity from Light (AMELI)
The ERC POC AMELI aims to convert light into electricity using metamaterials, i.e. artificial materials whose properties are mainly dictated by their internal geometric parameters. This new approach is based on controlled effects of the temperature of the electrons created by illumination of the structures. A first proof of concept in the field of photovoltaics and/or photodetection will be presented at the end of the project.
Also worth reading

Cavity-enhanced fractional quantum Hall phases and cavity-modified spin splittings
A collaboration between the Equipe Théorie at MPQ and scientists from ETH Zurich and the Flatiron Institute has demonstrated, both theoretically and experimentally, that giant vacuum fields confined in a split-ring resonator cavity can profoundly alter...

Unravelling the nonlinear generation of designer vortices with dielectric metasurfaces
Researchers from the DON team have demonstrated and analyzed the generation of high-purity second-harmonic vortices with dielectric metasurfaces. These results are published in Light: Science and Applications. Vortex beams are currently drawing a great deal of...

Thermal stability of high-entropy nanoalloys: reality or chimera?
By studying at the atomic scale the thermal behavior of nanoparticles composed of gold, cobalt, copper, nickel and platinum, scientists have revealed that the stability of these so-called high-entropy nanoalloys is much lower than expected, as gold and copper...

On-chip generation of spatial entanglement
The QITE team just published in Phys. Rev. Lett. its work on the generation of spatial entanglement in nonlinear waveguide arrays, in collaboration with C2N and INPHYNI. Combining the generation and manipulation of complex quantum states of light on a single chip is a...