Laboratoire: MPQ (Matériaux et Phénomènes Quantiques), Université Paris Cité & CNRS
Adresse: Bâtiment Condorcet – 10 Rue A. Domon et L. Duquet – 75013 Paris
Directeur de stage/thèse: Clément Barraud
Tel: 0627065271
e-mail: clement.barraud@u-paris.fr
Scientific project:
For this experimental project, we would like to investigate the magnetotransport properties of hybrid ferromagnetic metal/graphene/molecules/ferromagnetic metal spintronic devices. After injection and propagation into the organic film, the spin polarized current will then be detected thanks to magnetoresistive effects at the second electrode. The amplitude of the magnetoresistance and its variation with respect to the energy give precious information to understand the device’s physics. The parameters of interests are the spin injection efficiency, the spin transport properties of the organic film and the efficiency of the detection method. We will thus play with different devices configurations and materials to investigate the spin response of the device and to determine the critical parameters for an efficient spintronics device. In particular, we will investigate quantum interference effects given by the cross- conjugation of certain molecules like anthraquinone [5].
We are looking for a motivated student interested in physics to pursue this research activity. The intern will be in charge of the nanofabrication, the characterization and the measurements of the devices. Ongoing active collaborations with a chemistry group at ITODYS and a physics team at UMPhy CNRS/Thales.
[1] Fert, A. Nobel Lecture: Origin, development, and future of spintronics. Rev. Mod. Phys. 80, 1517–1530 (2008)
[2] Sanvito, S. & Rocha, A. R. Molecular-Spintronics : the art of driving spin through molecules. J. Comput. Theor. Nanosci. 3, 624 –642 (2006).
[3] Bajaj, A., Khurana, R. & Ali, M. E. Quantum interference and spin filtering effects in photo-responsive single molecule devices. J. Mater. Chem. C 9, 11242–11251 (2021).
[4] Barraud, C. et al. Unravelling the role of the interface for spin injection into organic semiconductors. Nat. Phys. 6, 615–620 (2010).
[5] Rabache, V. et al. Direct observation of large quantum interference effect in anthraquinone solid-state junctions. J. Am. Chem. Soc. 135, 10218–21 (2013).
Methods and techniques: micro and nanofabrication in clean-room environment (e-beam lithography, thin film deposition, etching, plasma surface treatment…) structural characterizations by atomic force microscope, electrical transport and magnetotransport measurements from 1K to 350K
Possibility to go on with a PhD: YES
Envisaged fellowship: EDPIF
À lire aussi

Cavity-enhanced fractional quantum Hall phases and cavity-modified spin splittings
Une collaboration entre l’Équipe Théorie de MPQ, l’ETH Zurich et le Flatiron Institute a démontré, à la fois théoriquement et expérimentalement, que les champs du vide géants confinés dans une cavité peuvent profondément modifier les interactions électron-électron...

Parution du livre “Physique quantique des matériaux ” par Alain Sacuto
Alain Sacuto (équipe SQUAP) publie aux éditions Dunod son livre sur la Physique quantique des matériaux, fruit de nombreuses années d’enseignement à l’Université Paris Cité. La physique quantique des matériaux est au cœur des développements technologiques les plus...

Stabilité thermique des nanoalliages à haute entropie : réalité ou chimère ?
En étudiant à l’échelle atomique le comportement thermique de nanoparticules composées d’or, de cobalt, de cuivre, de nickel et de platine, des scientifiques ont révélé que la stabilité de ces nanoalliages dits à haute entropie est beaucoup plus faible qu’espérée, car...

Exploring Exotic Electronic States in 2D Transition Metal Dichalcogenides
Figure 1: Successive STM images of VTe2 monolayer where CDWs are manipulated by local excitation. From left to right, a 4x4 phase is switched to 4x1 and the 4x1 phase is rotated [1]. Laboratoire: MPQ (Matériaux et Phénomènes Quantiques), Université Paris Cité &...