Laboratory: MPQ
Address: 10 Rue A. Domon et L. Duquet – 75013 Paris
Supervisor of internship and/or PhD thesis: Giuseppe LEO
Tel: 01 57 27 62 27, 06 67 44 38 73
e-mail: giuseppe.leo@u-paris.fr
Scientific project:
In the last decade metasurfaces, that is 2D arrays of optical nanoantennas with sub-wavelength size and separation, revolutionised the field of optics. They also showed their potential in the nonlinear regime, especially in connection with the huge non-resonant (2) of III-V semiconductors in the short-wavelength infrared (SWIR) spectral range. In this domain, MPQ recently achieved second harmonic generation (SHG) with phasefront control in a nonlinear metasurface (NLMS), with 10-5 conversion efficiency (Fig. 1). To improve this figure, relevant efforts are currently being devoted by the NLMS community, mainly by exploiting the narrow resonances of quasi-bound states in the continuum associated to nonlocal resonant modes and strong near-field coupling between meta-atoms.
In this rapidly evolving context, this internship/PhD project aims to tackle an old problem of nonlinear optics, namely the efficient up-conversion of infrared radiation into the silicon (Si) absorption band, with a device allowing for ultrafast detection of SWIR radiation. Building upon the above breakthrough, we will do so by integrating a NLMS to a Si avalanche photodiode (APD). More specifically, following also our demonstration of NLMS for SWIR-to-visible upconversion via SFG, we will address signals with wavelength beyond the fast-detection limit of InGaAs, by combining a Si APD with an AlGaAs-on-insulator NLMS. The latter will mix a signal at S≈1.8 µm with a pump at P≈1.3 µm to perform sum frequency generation (SFG) at SFG≈0.75 µm, i.e. at about the maximum spectral responsivity of Si.
We aim at two synergic objectives that will disclose for the first time the full potential of NLMSs with a SFG-based integrated device for ultrafast SWIR detection: 1) high-Q NLMS integrated directly on a Si APD; and 2) large-area NLMS-based lens integrated on a Si APD. In the former case we will demonstrate a uniform nonlocal NLMS that will be will be directly integrated on the APD; in the latter, SFG and focusing will be provided by a NML separated from the APD by a transparent spacer with an optical thickness equal to its focal length.
This internship/PhD will take place at MPQ, in collaboration with CEA (technology, photodetection) and INRIA (advanced nonlocal design; inverse-design optimization of single meta-atoms or meta-molecules).
Methods and techniques: photonic modelling, nanofabrication, experimental optics
Possibility to go on with a PhD ? YES
Envisaged fellowship ? YES (ANR project)
Figure 1. Aluminum Gallium Arsenide (AlGaAs) NLMS, where pairs of “red” pump photons generate and focus “blue” photons via SHG
Figure 2. Optimization can increase SHG power by a factor 16 compared to standard design.
À lire aussi
Giuseppe Leo nommé Membre Senior de l’IUF
Félicitations à Giuseppe Leo pour sa nomination à l’IUF! Giuseppe Leo, Professeur à l'Université Paris Cité et responsable de l'équipe DON au laboratoire MPQ, vient d’être nommé Membre Senior de l’Institut Universitaire de France (IUF), au titre de la chaire...
Aloyse Degiron lauréat d’une ERC Proof of Concept
Aloyse Degiron, DR au laboratoire MPQ, vient d’obtenir une ERC Proof of Concept. Aloyse Degiron A Metamaterial-based technology to create Electricity from Light (AMELI) L'ERC POC AMELI vise à convertir de la lumière en électricité grâce à des métamatériaux,...
Un peigne mécanique de fréquences contrôlé par la lumière
Par des expériences d’optomécanique dans un micro-résonateur semiconducteur, des chercheurs de l’équipe DON du laboratoire MPQ, en collaboration avec le Centre de Nanoscience et Nanotechnologies, ont montré qu’un couplage entre différentes formes d’énergie peut donner...
Une métasurface pour génération optique non-linéaire avec contrôle total de phase
Les chercheurs de l’équipe DON de MPQ ont obtenu la première métasurface optique diélectrique générant du second harmonique avec un contrôle total de la phase. Figure : Image MEB d’une lentille de Fresnel pour la focalisation d’un signal de seconde harmonique. Grâce...